If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56t^2-19t-15=0
a = 56; b = -19; c = -15;
Δ = b2-4ac
Δ = -192-4·56·(-15)
Δ = 3721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3721}=61$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-61}{2*56}=\frac{-42}{112} =-3/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+61}{2*56}=\frac{80}{112} =5/7 $
| 3u-7u=-4u | | 35+12.50x=500 | | (k−8)12=84 | | 2x-5=5=53x | | t3=-72 | | -10+2k=3k-2 | | -(x+13)-2x=44 | | x/144=18 | | 3x+4-x=2(2x+3 | | (2x-9)°=(x+39)° | | 13t-7=-42 | | 8v-31=6v-5 | | 1/2=q+2 | | ∣6x−9∣=–27 | | 3x-6+2x-4=180 | | 0.5(x+6)=0.5x-9 | | 2.3(x-6)=5.3(x+3) | | 2p^2-11+12=0 | | 3u+20=4u | | 4532=82x42 | | Y=29x+615 | | 6x+20=4x+105x | | (2w-5)=12 | | 2w-5)=12 | | 23(x-6)=53(x+3) | | -4x-5=-6x-21 | | 8+v3=17 | | 615=29x | | 8/b-4=-2 | | 24x=55 | | 3-7x=5x-117 | | 12y+(13)-39=4(13)+y+18 |